Timedependent approach to transport and scattering in atomic and mesoscopic physics
نویسنده
چکیده
Transport and scattering phenomena in open quantum-systems with a continuous energy spectrum are conveniently solved using the time-dependent Schrödinger equation. In the timedependent picture, the evolution of an initially localized wave-packet reveals the eigenstates and eigenvalues of the system under consideration. We discuss applications of the wave-packet method in atomic, molecular, and mesoscopic systems and point out specific advantages of the timedependent approach. In connection with the familiar initial value formulation of classical mechanics, an intuitive interpretation of transport emerges. For interacting many-particle systems, we discuss the efficient calculation of the self-consistent classical transport in the presence of a magnetic field.
منابع مشابه
Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT
Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...
متن کاملNonlinear scattering of atomic bright solitons in disorder
We observe nonlinear scattering of K atomic bright solitons launched in a onedimensional (1D) speckle disorder. We directly compare it with the scattering of non-interacting particles in the same disorder. The atoms in the soliton tend to be collectively either reflected or transmitted, in contrast with the behavior of independent particles in the singlescattering regime, thus demonstrating a c...
متن کاملCoherent Transport of Single Photon in a Quantum Super-cavity with Mirrors Composed of Λ-Type Three-level Atomic Ensembles
In this paper, we study the coherent transport of single photon in a coupled resonator waveguide (CRW) where two threelevel Λ-type atomic ensembles are embedded in two separate cavities. We show that it is possible to control the photon transmission and reflection coefficients by using classical control fields. In particular, we find that the total photon transmission and reflection are achieva...
متن کاملThe electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures
p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); } In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentratio...
متن کاملThe Landauer Approach to the Critical Source-Channel Barrier in MOSFETs
A simple treatment of the nano-scale MOSFET in the spirit of the Landauer approach to transport in mesoscopic structures is described. First, the essential physics is illustrated by examining numerical simulations. Next, the analytical theory of the ballistic MOSFET is discussed, and finally, the role of scattering in nano-scale MOSFETs is discussed.
متن کامل